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Bacterial self-replication is a complex process composed of many
de novo synthesis steps catalyzed by a myriad of molecular process-
ing units, e.g., the transcription–translation machinery, metabolic
enzymes, and the replisome. Successful completion of all produc-
tion tasks requires a schedule—a temporal assignment of each of
the production tasks to its respective processing units that respects
ordering and resource constraints. Most intracellular growth pro-
cesses are well characterized. However, the manner in which they
are coordinated under the control of a scheduling policy is not well
understood. When fast replication is favored, a schedule that mini-
mizes the completion time is desirable. However, if resources are
scarce, it is typically computationally hard to find such a schedule,
in the worst case. Here, we show that optimal scheduling naturally
emerges in cellular self-replication. Optimal doubling time is obtained
by maintaining a sufficiently large inventory of intermediate metab-
olites and processing units required for self-replication and addition-
ally requiring that these processing units be “greedy,” i.e., not idle
if they can perform a production task. We calculate the distribu-
tion of doubling times of such optimally scheduled self-replicating
factories, and find it has a universal form—log-Frechet, not sensi-
tive to many microscopic details. Analyzing two recent datasets of
Escherichia coli growing in a stationary medium, we find excellent
agreement between the observed doubling-time distribution and
the predicted universal distribution, suggesting E. coli is optimally
scheduling its replication. Greedy scheduling appears as a simple
generic route to optimal scheduling when speed is the optimiza-
tion criterion. Other criteria such as efficiency require more elab-
orate scheduling policies and tighter regulation.
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An Escherichia coli bacterium is a remarkably efficient self-
replicating organism. Given the right conditions, this rod-

shaped bacterium will consume external metabolites and grow,
adding new membrane-bound volume, while concurrently repli-
cating its content composed chiefly from the transcription–
translation machinery, metabolism, and DNA. After all of the
essential elements have been replicated and spatially segregated,
E. coli divides by completing the construction of the division
plane, approximately midway between the old and the new poles.
The two copies can both continue to self-replicate, as long as the
permissive conditions persist.
The study of self-replication as an industrial process was pio-

neered by John von Neumann (1). In his first, less known model,
the kinematic self-replicator, he envisioned a room full of ele-
mentary parts and a nontrivial self-replicating machine that
copies itself by consuming these parts as substrates. The main
goal of von Neumann was to understand how a physical system
can become more complex over time. Motivated by the intro-
duction of the universal Turing machine to the theory of com-
putation, he introduced the concept of a “universal constructor”
(U)—a machine that can read instructions and translate them
into assembly of any machine in the factory, including itself,
provided all of the substrates are available. A self-replicating fac-
tory is called nontrivial if it contains such a U machine as a com-
ponent. In contrast, trivial self-replication is a simple autocatalytic
process, such as template replication or crystal growth.

In von Neumann’s model, replication unfolds as follows (2).
First, a new chassis is made, and then the universal constructor is
triggered to start reading the instructions and assembling all
of the internal machinery, including itself. However, the new
factory is not functional until a copy of the instructions is made.
To keep the design simple, von Neumann suggested that the
instructions should not instruct their own replication but rather
be template-replicated by a dedicated machine, R (produced by U),
that is triggered upon the completion of the instruction translation
phase. Remarkably, these observations were made before the dis-
covery of the molecular structure of DNA, and the molecular
mechanism of DNA replication, transcription, and translation.
The emphasis of von Neumann’s model is on the logical design

of such a factory. Here we study the temporal organization of
self-replication and, in particular, its scheduling. von Neumann’s
model assumed serial dynamics but cells do not grow serially but
rather parallelize their growth. However, using a nonoptimal
parallel scheduling scheme still results in slow overall growth
compared with the optimum. This difference can have a signifi-
cant effect on fitness in a competitive environment.
The “scheduling problem” is the problem of finding such a

schedule. It is known that, if the number of processing units
available is smaller than the number of production tasks that
require them, finding an optimal schedule is typically computa-
tionally hard in the worst case, although certain heuristics are
known to provide good approximations for the average instan-
ces (3–5).
Here, we study the scheduling problem of a self-replicating

bacterial cell. Surprisingly, our analysis of recently measured
datasets of E. coli exponentially growing in a stationary medium
(6, 7) reveals that the measured distribution of doubling times
fits well to the predicted distribution of doubling times of an
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optimally scheduled self-replicating factory. This suggests that
E. coli is optimally scheduling its replication in these media. To
explain this result, first, a coarse-grained picture of a bacterial
cell is presented, and its reaction graph is briefly introduced. The
concept of a project graph, well-known in system engineering, is
invoked to represent the temporal precedence constraints that
exist among all of the de novo synthesis tasks that define the
project. We introduce the project graph of a self-replicating and
balanced factory and define the “replicative buffer”—the num-
ber of basic self-replicating units within a cell. A replicative
buffer greater or equal to 1 allows a large class of random
scheduling algorithms known as list algorithms (8) to obtain
optimal completion times. We derive the distribution of optimal
completion times for a special type of project graph representing
balanced production. Finally, we present the aforementioned
analysis of a recently published dataset of E. coli growing expo-
nentially in a rich medium (6) and in minimal media supple-
mented with glucose or glucose and amino acids (7), and show
that the data fit well to our predicted optimal universal curve,
suggesting that E. coli in good growth conditions at steady state
is optimally scheduling its replication. We then conclude with
a short discussion and give an outlook to future extensions of
this framework.

The Cell as an Autocatalytic Cycle
In a bacterial cell, prominent examples for processing units in-
clude metabolic enzymes, RNA and DNA polymerases (RNAP,
DNAP), and ribosomes, which, like processing units in a factory,
are required for a production task (biosynthesis), consume input
materials and free energy, are not consumed during the process,
yet are essential for its successful completion.
There are two unique features characterizing a self-replicating

factory. The first is “closure.” Processing units convert raw ma-
terial into products, while consuming free energy. In a self-rep-
licating factory, the products are the processing units. Thus,
when all of the processing units complete their production tasks,
each processing unit is present in duplicate (or more). To pro-
duce a processing unit may require several other processing
units, self included. The second feature is “essentiality”—each
processing unit is required by at least one other reaction that
produces a different type of processing unit.
To illustrate how closure is obtained in a bacterial cell, we

present a coarse-grained schematic of it in Fig. 1. Each symbol in
the figure represents a family of functionally related macro-
molecules. For example, the replisome (the R machine in von
Neumann’s model), which is composed of many types of proteins
and protein complexes, is represented by a single DNAP.
All proteins are synthesized by ribosomes, composed of ribo-

somal proteins (represented by the colored hexagons in the fig-
ure) and ribosomal RNA (rRNA) represented by a green strand.
The rRNA is transcribed from DNA by RNAP, which is a self-
assembled protein complex composed, in bacteria, from five
different proteins.
To synthesize proteins, ribosomes require a pool of charged

transfer RNA (tRNA) and a family of auxiliary proteins such as
elongation, initiation, and maturation factors, as well as amino-
acyl-synthetase proteins that catalyze the tRNA-amino acids
charging. All of these auxiliary proteins are represented by the
EF-Tu protein (green circle in Fig. 1). The tRNA is transcribed
by RNAP and reaches its mature form with the help of some
dedicated proteins (of course, mRNA is also transcribed by
RNAP). Finally, membrane and division plane synthesis is facili-
tated by dedicated proteins. All these processes require numerous
metabolites such as ribonucleosides and deoxyribonucleosides,
amino acids, lipids and oligosaccharide, ATP, GTP, and NADH.
All metabolites are either synthesized or imported from the
outside by the metabolic machinery, which is mainly composed
of metabolic proteins, represented by orange triangles in Fig. 1.

The Catalytic Reaction Graph
To model the structure of a self-replicating factory, we follow ref. 9
and introduce a directed graph—the catalytic reaction graph, G=
fVG;EGg, with a node set VG composed of two types of nodes—
representing materials (circles in Fig. 2) and reactions (squares in
Fig. 2), and an edge set EG composed of two types of edges, for
materials consumed or produced by a reaction (solid arrows going
into or out from a square reaction node in Fig. 2) or catalysts,
required for the occurrence of certain reactions yet not consumed
by them (represented by dashed arrows going into reaction nodes
in Fig. 2). Using this formalism, we can represent a coarse-grained
model for the cell that is essentially identical to the von Neumann
model. This will facilitate a better characterization of different
temporal organizations of self-replication, which we discuss
subsequently.
Let F =F1 ∪F2 ∪F3 ∪F4 ∪F5 (food set) be the set of all es-

sential substrates and intermediates that are consumed by at
least one de novo biosynthesis reaction in the cell, and f be the
external set of materials (assumed to be fixed and abundant). For
example, nucleotides and amino acids both belong to the set F.
Let I be the DNA (instruction set), and R be the replisome
machinery, which catalyzes the template replication of I. Fur-
thermore, let U be the transcription–translation machinery (the
universal constructor) that reads instructions from I and pro-
duces a copy of itself as well as all other processing units (pro-
teins) that belong to P. The set P is responsible for biosynthesis
processes and their control in the cell. It contains all of the
proteins that are not members of R or U. For example, P includes
metabolic proteins, transporters, and transcription factors. The
set V represents the membrane-bound volume, made from all of
the membranal layers including, e.g., the embedded protein trans-
porters (which are a subset of P). Note that the membrane-bound
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Fig. 1. Coarse-grained schematic to demonstrate the closure property of
a bacterial cell. Each element in the figure is a representative member of
a family of similar molecules sharing the same function. Arrows represent
de novo synthesis. Orange arrows represent metabolic synthesis, with the
exception of light and dark blue arrows, which represent membrane and
division plane synthesis, respectively (the arrows point to the synthesis
product). Synthesis of tRNA and self-assembly of ribosomes is represented by
green arrows. Protein synthesis and self-assembly of proteins into protein
complexes are represented by red arrows. All proteins are produced by
preexisting ribosomes. All ribosomes are self-assembled from rRNA and ri-
bosomal proteins (represented by colored hexagons). All RNA forms are
transcribed by RNAP. Although it is possible to further deepen the level of
description, any additional functional group not present in this schematic
can be produced by one or more groups represented in the schematic.
Furthermore, each functional group represented in the figure is essential for
the production of members of another group.
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volume is essential for all reactions, because in its absence re-
actions come to a halt due to molecular overcrowding.
To complete the definition of the catalytic reaction graph, we

define the reaction node set. There are four types of reactions:
MR produces the set F from the external materials in f (metab-
olism). UR produces all of the proteins in P, U, and R (as well as
RNA for private consumption) from the set F (transcription and
translation), and the reactions in VR assemble the membrane,
thus creating essential membrane-bound volume (including the
reactions that build the division plane). The reaction RR pro-
duces a copy of I while consuming elements from F using the
existing I as template (DNA replication). The catalytic set C is
composed of the subsets P, U, V, R, and I.
The following set of reactions summarizes the above description:

f +P1 → F +P1ðsubstrates  synthesisÞ
F1 + I1 +U → I1 + 2Uðribogenesis; RNAP  assemblyÞ
F2 + I2 +U → I2 +U +Pðprotein  synthesisÞ
F3 +P2 → V +P2ðmembrane  assemblyÞ
F4 + I3 +U → I3 +U +R  ðreplisome  synthesisÞ
F5 +R+ I → 2I +R  ðDNA  replicationÞ;

[1]

where F, P, and I are the union of the sets F1; . . . ;F5, P1;P2, and
I1; I2; I3, respectively.
In Fig. 2A, the directed reaction graph of the system described

by Eq. 1 is presented. Fig. 2B illustrates the types of molecules
composing each material node in the reaction graph using the
same graphical notation as in Fig. 1. The exact composition is not
assumed to be one molecule per type. For example, U have
a different number of ribosomes, RNA polymerases, elongation,
initiation maturation and termination factors, aminoacyl trans-
ferases, and tRNAs.

From the Reaction Graph to the Project Graph
The project evaluation and review technique (PERT) is exten-
sively used in system engineering as a means for scheduling im-
portant events in a project, and for estimating the expected
project completion time and its distribution (10). A key concept
in PERT is the project graph—a directed acyclic graph whose
nodes represent milestone events in the project, marking the
initiation or completion of a major project task; the directed

edges represent the tasks themselves. In a production project,
the initiation or completion of a production task (de novo bio-
synthesis) are the events, whereas the edge that connects them is
the production task. Each edge in the project graph is also
equipped with a nonnegative weight—the task duration. Edges
also have resource demands—number and type of processing
units and input materials required to perform them. We in-
troduce two unique nodes in the project graph, s (start) and
t (terminal), that mark the beginning and the end. The s node
connects to all nodes that otherwise do not have entry nodes, and
all of the otherwise terminating nodes feed into the t node
(Fig. 3). We call a path from start to end an st path.
The structure of the project graph captures the temporal

precedence constraints among all production tasks. The nodes
function as “AND” gates, not allowing a new task to start (traverse
an outgoing edge) before all predecessor tasks (preceding edges)
are completed. Thus, the project graph is directed and acyclic, as
it describes the progress in time of all of the tasks in the project.
Upon constructing the project graph and assigning durations

to all its edges, the “optimal project completion time” Tc can be
derived by finding the duration of the longest st path, known as
the critical path. Other st paths can have “slack”—a duration gap
between their completion time and Tc, allowing more flexibility
in scheduling activities belonging to them. When fast completion
time is a desirable goal, one can alleviate the constraints that cause
a given critical path to be dominant, possibly creating a new (faster)
critical path. Iteratively repeating this constraint elimination pro-
cess until convergence, results in a maximally balanced project
(11, 12), which is completed faster than the original project.
In Fig. 2C, the project graph is constructed from the reaction

graph (Fig. 2A) by splitting the nodes to account for their tem-
poral order of appearance. For example, when all input material
nodes depicted in orange and green in Fig. 2C are simulta-
neously present at t= 0, two self-replicating processes run in
parallel and the doubling time Tμ will be the completion time of
the slowest task out of the twelve production tasks, marked by
the twelve solid arrows emanating from all of the reaction
(square) nodes: Tμ =maxi∈f1;...;12gTi.

The Scheduling Problem
In order for a biosynthetic task to be completed, the associated
catalysts have to be allocated to the reaction along with the nec-
essary input materials. Assuming the input materials are abundant,
the following “scheduling problem” arises—how to temporally

A C

B

Fig. 2. A presents the reaction graph described by
Eq. 1. The material components, described by circles
with capital letters in the figure, are shown in B
using the same graphical representation as Fig. 1.
For example, the universal constructor U contains
ribosomes, RNAPs, tRNAs, and auxiliary proteins in-
cluding initiation, elongation, and release factors, as
well as a set of aminoacyl-transferase proteins, all
required for streamlined production. In C, we illus-
trate how charging of the catalytic and metabolic
pools allows the production lines for I, U, V, P, R, and
F to work concurrently. A material node with one
star was produced with the help of unstarred
materials, and a two-star material node was pro-
duced by using one-star nodes. Thus, by temporal
ordering of the material nodes, the reaction graph
becomes the project graph, which is directed and
acyclic. The level of initial charging determines the
amount of overlap between different production
cycles. Symmetric division resets the state of the
pools to roughly or accurately one-half. The resulting
project graph is thus periodic. When the average par-
allelism p is an integer immediately after division, the
cell builds p basic self-replicating units in parallel.
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assign tasks to processing units such that the completion time of
the entire project is minimized (5). In the noisy cellular milieu,
we cannot expect scheduling algorithms to be precise. Instead,
we ask what is expected from a randomized algorithm. To better
characterize the scheduling problem, it is useful to introduce the
following parameters. The workload Tw of a specific processor
(catalyst) is defined as the sum over all durations of activities
that require the processor. The workload represents the total
demand for processors in terms of the processing time required.
If there is only a single processor of a specific type, the optimal
completion time is at least as great as its workload, because this
processor has to perform all its tasks serially. We define the
average parallelism pc (13) for a particular processing unit by
dividing its associated workload Tw, by the critical path duration
Tc, and rounding up: pc =Tw=Tc. The average parallelism is an
estimate for the minimum number of processors required to allow
for optimal completion time (see SI Text, section 7, for an estimate
of the number of self-replicating units in E. coli doubling every
24 min based on protein and DNA replication workloads).
When there are excess of catalysts, then whenever there is a

demand for them, it can readily be met, provided that they never
idle if there is an available task (greedy scheduling). Thus, al-
though excess is wasteful in terms of free energy cost, it is ben-
eficial in terms of speed, as it allows for optimal completion time,
determined only by the critical path duration. Moreover, this
excess also allows for proper balancing in the presence of ran-
dom delays that affect the actual demand. However, at some
point, excess of catalysts can become suboptimal, because with-
out further control, a greedy scheduling policy can deplete either
the input resources or the catalytic pool, by allocating catalysts
to reactions that have randomly completed earlier, causing a
speedup in the progress of certain activities at the expense of
others. This problem is mitigated by balancing as discussed be-
low. Note that because the different task durations are stochastic
variables, Tw, Tc, and pc are also stochastic. We can thus gen-
eralize pc to another parameter, pc, which is the minimal number
of processing units required for optimal completion with a given
confidence level c.

Basic Unit of Parallel Self-Replication
Now we apply the average parallelism concept to the self-
replicating factory. We first define the initial demand vector
~d, such that

dj = dcj ⊕ dsj =
XnR

i=1

Cij +
XnR

i=1

Sij; [2]

where the catalyst input matrix, C, of size nR × ntot, has an entry
ðCÞij equal to the number of catalysts of type j required by re-
action i (ntot = nC + nF is the number of input material types, nC
is the number of catalyst types, and nF is the number of substrate
types). The matrix S is defined similarly, i.e., Sij is the number of
substrates of type j consumed by reaction i. The vectors dc

!
and ds

!
separately account for the demand for catalysts and substrates
for each reaction. The sum dc

!
⊕ ds

!
is the direct sum of the two

vectors. Thus, the demand vector counts the total number of
processors and substrates required for the completion of a single
round of parallel replication, i.e., simultaneously passing through
all of the reactions in the reaction graph once.
Let ~nðt= 0Þ be an occupation number vector whose elements

account for the number of input materials (processing units and
substrates) per type immediately following division ðt= 0Þ, e.g.,
the initial number of ribosomes, genes, RNAPs, enzymes, and
transporters. If any of the elements in ~nð0Þ is less than the cor-
responding element in ~d, then the process is not fully parallel,
because some processors or materials required for performing
certain reactions are missing. To achieve full parallelism, the miss-
ing processors should be replenished.
When, on the other hand, ~nð0Þ= p×~d, with p≥ 1, then each

reaction can potentially occur simultaneously bpc times. In

particular, when p is an integer, the doubling time Tμ, defined as
~nðTμÞ= 2~nð0Þ, is determined by the duration of the slowest reaction:
Tμ =maxj∈f1;...;pg;i∈f1;...;nRgtij, where tij is the time to complete the
ith reaction by a complete set of processing units j∈ f1; . . . ; pg. If,
furthermore, the factory is balanced, the resulting growth is expo-
nential, with p parallel self-replicating basic units advancing in unison
with some residual statistical noise. In the absence of correlations,
the resulting distribution of completion times is the maximum of
identically and independently distributed random variables and
hence equals to one of the three classical “extreme value statistics”
limit distributions. However, due to the requirement for balanced
production, the different reaction rates are coupled, and hence
correlated. Thus, a different approach for calculating the distribution
of doubling times is required.
To dynamically balance their inventory of catalysts and substrates,

cells often use end-product feedback inhibition. For example, in the
biosynthesis of the amino acid tryptophan, a metabolically costly
amino acid, excess tryptophan binds to the enzyme at the top level of
the dedicated metabolic pathway that produces it, thus down-regu-
lating its own production (14). A beautiful mechanism for trans-
lational control was discovered by Nomura and coworker (15),
where excess ribosome proteins that fail to bind to their targets al-
ternatively bind to their respective mRNA, thus stopping their own
production. All of these mechanisms use the excess end product, i.e.,
the part that was not consumed by downstream reactions, as a neg-
ative-feedback signal, down-regulating their own production, result-
ing in a dynamically balanced production line.
We define the basic unit of parallel self-replication as the

smallest complete set of processing units and materials that is
self-consistent: ~nð0Þ=~d (i.e., p= 1). This is the minimal set re-
quired for parallel execution of all nR reactions (in Eq. 1). It is
also natural to define the basic “serial” unit of self-replication as
the minimal set of all initial states~nðt= 0Þ with p< 1 that can still
grow back to p= 1 and beyond (the time for this “catching up” is
known as the lag phase).
An important class that interpolates between fully serial and

fully parallel production is the pipelined self-replication, where
the demand vector is charged in a way that allows one basic self-
replicating unit to produce another basic self-replicating unit
(marked with a star in Fig. 2C), with a time lag. Even before the
catalysts finish building all of the machinery of the starred unit
(next generation), the newly formed elements from the starred
unit start replicating the double-star unit (marked with a double
star in Fig. 2C). Thus, catalysts that finish their role in producing
a given unit move to the next job of producing the same unit for
a later generation. At steady state, there are multiple basic self-
replicating units, with overlapping and lagging production cycles,
until finally division (which is also scheduled periodically) resets
this process. To conclude, in pipelined self-replication, there is
an overlap in the production of several basic self-replicating units
and an overall noninteger average parallelism (the integer part
counts the number of overlapping cycles). The scheduling of self-
replication can naturally lead to pipelined production, if tasks
are ordered properly, and full parallelism is also possible when
the lag times are set to zero across the factory.

Calculating Optimal Doubling Time
Consider a given project graph, and assume that the duration of
each task is a random variable distributed according to a distribu-
tion that is exponentially decaying at large times. To calculate the
project completion time, we introduce the exponentially weighted
adjacency matrix of the project graph, which is defined as follows:

Mij = eβTij ; [3]

where β � 1 is a large positive number, and Tij =TðeÞ is the
duration of a task e= ði; jÞ∈EG; otherwise if ði; jÞ∉EG, then
Tij =−∞. We arrange the indices of the nodes such that the first
node ði= 1Þ represents the project start, and the last node i= n
represents its end. The ðt; sÞ= ðn; 1Þ edge,Mn1 = 1, is the previously
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defined resetting edge that returns the project back to start, upon
the completion of the last task, thus mimicking the division
event. We denote this matrix with the exponentially weighted
entries and an auxiliary resetting node by Mc, where the depen-
dence on β is suppressed for brevity. The matrix trace TrðMk

c Þ is
composed of a sum over all closed paths with k activities, expo-
nentially weighted by their total duration. In the limit β→∞, the
leading contribution is the longest path with k steps and its in-
teger multiples. We further divide TrðMk

c Þ by k, because there are
k equally contributing nodes on each cycle of length k, depending
on where we locate the cycle’s start. Summing over all k values,
we obtain a discrete path integral, which is a function of β. Di-
viding by β, we obtain the following:

Tc =
1
β

X

k

Tr
�
Mk

c

�
uk

k
=
1
β

X

k

X

l

λkl u
k

k
=
1
β
ln

1
detðI − uMcÞ; [4]

where λl is the lth eigenvalue of Mc. Eq. 4 becomes exact in the
limit β→∞ after regularization at u= 1. To obtain the distribu-
tion of completion times, one has to calculate the probability
distribution of − 1

β ln  detðI − uMcÞ with a specified ensemble of
random project matrices. The randomness can be for a fixed-
graph topology with random weights (durations) or can include
the graph topology. In the next sections, we focus on the former
and solve for the distribution of completion times for a class of
project matrices that describe a balanced production line. For a de-
tailed derivation of Eq. 4 and further explanation, we refer the
reader to the SI Text, sections 1–3 and Figs. S1 and S2.

Balanced Self-Replication Has a Periodic Project Matrix
Let~nðt= 0Þ be an occupation number vector with integer elements
that counts the number of processing units and input materials
present right after division (which we denote by t= 0). For example,
using the coarse-grained picture from Eq. 1 and the notation
presented in Fig. 2, ~nðt= 0Þ= ðnF1 ; . . . ; nF5 ; nP1 ; nP2 ; nU ; nV ; nR;
nI1 ; . . . ; nI3Þ. Each reaction produces other catalysts or substrates
that allow other reactions to proceed. When the initial state is
ð1; 1; . . . ; 1Þ, doubling occurs at ð2; 2; . . . ; 2Þ; if, however, the initial
state is ð1; 1; . . . ; 1Þ± δ~n with 0:5<maxiðδniÞ< 1, then there are
two overlapping self-replication cycles.
The balancing mechanism is important, as it prevents over-

production of certain materials on the expense of others. It locks
the factory to the critical path. Recall that the node set VG of
a periodic digraph has a unique property that it can be parti-
tioned into q disjoint sets, VG =V1 ∪V2 ∪ . . . ∪Vq, such that

every edge that originates from Vi ends up in Vi+1 with Vq+1 =V1
(16). In our case, the node sets are milestone biosynthetic events,
i.e., additions of a given fraction of F, P, U, V, R, or I, to ~n. In
a balanced self-replicating factory, the progress in the production of
each processor type is regulated such that the production front—the
plane perpendicular to the occupation number ~nðtÞ, progresses
uniformly (i.e., parallel to itself), up to some statistical tolerance δ~n.
Thus, ~nðtÞ progresses from one plane to another uniformly until
reaching (within the allowed error margin) to the doubling
plane, where it splits back, resulting in a global periodic matrix
that describe the progress of the project. Hence, balanced growth
in the biological sense (keeping the proportion fixed) amounts to
locking all production rates to a global parameter, the critical
path, and a balanced factory in the system engineering sense
defined above, which is self-replicating, is also balanced in the
biological sense. We note that the relevant scheduling scheme
that supports such growth at steady state is cyclic scheduling (17).
The project completion time of an irreducible periodic matrix

with a large spectral gap (SI Text, section 3) can be calculated
analytically, due to the discrete rotational symmetry of the ad-
jacency matrix spectrum. The eigenvalues satisfy λl = jRlje2πil=q.
The maximal eigenvalue is real and has a value, which we denote
by λmax =Rmax. Plugging in Eq. 4 and noticing Rmax � 1 because
it scales exponentially with β (see SI Text, section 3, for more
details), we obtain the following:

Tμ =− lim
β→∞

1
β

X

l

logð1− ujRljÞ= lim
β→∞

1
β
logRmax: [5]

The periodic matrix is asymmetric and contains elements that are
distributed with a power law tail above the diagonal (because an
exponent of a random variable with an exponential tail has a
power law distribution) (SI Text, section 2). The distribution of
the maximal eigenvalue of a random Wishart matrix with heavy
tails was recently shown to belong to the Frechet class when the
entries are power law distributed (18). Thus, for β � 1, the max-
imal eigenvalue of Mt

cMc, a heavy-tailed Wishart matrix, is also
distributed according to the Frechet distribution. The largest
eigenvalue of Mt

cMc is real (Perron–Forbenius theorem) and
equals the square of the maximal eigenvalue of Mc; hence the
desired distribution of Tc is proportional to logRmax, which is the
log-Frechet distribution (SI Text, sections 1–6). This relation to
the Wishart ensemble can breakdown if (i) β is small, where the
Tracy–Widom distribution is expected (18). (ii) The spectrum is
not gapped, e.g., when the project is not balanced (as in a totally
serial project, where there is only one st path).
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Fig. 3. Production in well-defined stages leads to
a periodic project matrix and balanced growth. This
figure illustrates this point by presenting two bal-
anced project graphs with five stages (represented
by five different edge colors). In the right-hand side,
we present a tightly controlled project graph, where
the edges that connect each stage form a complete
bipartite graph. This is the tightest control possible;
no stage can start before the completion of the
previous stage. In the left-hand side, we present a
less stringent project obtained by pruning the edges
of the right-hand side graph. (A) The project graph.
Note the “division” task (dashed backward arrow)
that resets the factory back to the start node ðs= 1Þ
upon completion of the last stage. (B) Adjacency
matrices A of the two project graphs. Nonzero
entries are colored according to the color of the
edge they represent. For example, the entry A12;16

that represents the edge from node 12 to the ter-
minal node t ðt = 16Þ is marked by a red square.
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Our hypothesis regarding the existence of a replicative buffer
can be tested experimentally by measuring the number of origins
of replication right after division nOriC and verifying that
log2ðnOriCÞ is the replicative buffer, which is the maximal number
of divisions of this cell upon switching to a depleted environment
that only support growth of a single self-replicating unit (e.g.,
right before reaching the growth plateau in batch culture experi-
ments, or like the conditions in a slow-growth chemostat).

Comparison with Measured Distributions of Doubling Times
To test our prediction of optimal doubling time, we analyzed two
recent datasets of E. coli growing in different media. The first
dataset from ref. 6 is of strain K12, substrain MG1655 growing in
Luria–Bertani (LB) medium. The second dataset is taken from
ref. 7 and is of E. coli strains SX701 and JE116, based on E. coli
strain BW25993 (7) growing in M9 medium supplemented with
glucose, or M9 medium supplemented with glucose and amino
acids. The experiment of ref. 6 contains an impressive number of
single-cell growth and division measurements, out of which we
filter roughly 200,000 clean divisions of either mother, daughter,
or granddaughter E. coli cells exponentially growing in LB broth
at 37 °C within a narrow microfluidic canal, at an average dou-
bling time of 21 min (6). The experiment of ref. 7 contains 6,000
growth and division measurements of E. coli growing in M9
medium supplemented with glucose and amino acids, and 1,500

divisions in M9 media with glucose (7). The doubling time, Tμ,
was calculated by the following formula:

Tμ =
Tdiv

log2 RðTdivÞ; [6]

where Tdiv is the interdivision time, and RðTdivÞ is the length ratio
(ratio of the length of the cell at division divided by its initial
length). We compared two methods to calculate Tμ. The first is
described by Eq. 6, and the second is by fitting an exponent to
the measured growth curve. We obtained practically identical
doubling times in the two methods. After filtering noisy data (fits
with R2 < 0:98), we use the maximum-likelihood method to esti-
mate the location, scale, and shape parameters of the Frechet
distribution of the transformed data eβðTμ=TμÞ, where Tμ is the
average doubling time and β is an arbitrary positive number.
These parameters were then used for the log-Frechet distribution.
As evident in Fig. 4, all doubling times from the three environ-
ments fit very well with the log-Frechet distribution. We tested two
competing distributions, the gamma and the log-normal distribu-
tions, and found that they do not fit well with the data in contrast
to the log-Frechet distribution (SI Text, Figs. S3 and S4).

Conclusion and Outlook
We studied the distribution of doubling times of an optimally
scheduled self-replicating bacteria. Invoking PERT and the no-
tion of balanced growth (19), a periodic structure for the project
graph of a self-replicating production process was suggested. The
distribution of optimal doubling times for this graph structure
was calculated and found to have a universal shape—the log-
Frechet distribution. Contrary to hard combinatorial optimiza-
tion problems, finding the optimal scheduling in a self-replicating
factory is possible using a greedy scheduling scheme, provided
that the inventory of processing units and material inputs are
a larger-than-one multiple of the demand vector. To maintain
such a stoichiometric balance, some level of control over the rate
of production of different types of processing units is required,
which leads to a periodic project graph (i.e., a project graph with
a periodic adjacency matrix). To corroborate our model, we ana-
lyzed E. coli in three different media using the dataset of ref. 6 for
LB media and of E. coli in M9 media with glucose and either with
or without amino acids (data from ref. 7) and showed that their
doubling-time distributions agrees well with the predicted optimal
completion time distribution—the log-Frechet distribution, sug-
gesting that E. coli is optimally scheduling its self-replication in
these experiments. This natural tendency toward optimality when
minimizing the doubling time is the optimization criterion, suggests
that avoiding optimal growth in a permissive environment is in fact
a challenge for the cell, which requires additional regulation.
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Fig. 4. Log-Frechet fits to the measured doubling times in three environments.
Data from ref. 6 for E. coli cells growing in LBmedium is shown in blue circles. Data
from ref. 7 of E. coli cells growing in M9 medium supplemented with glucose and
amino acids is marked with green triangles, and for growth in M9 supplemented
with glucose, in purple squares. Log-Frechet curves with location, scale, and shape
parameters estimated from a maximum-likelihood estimator (and with β fixed to
1) are shown in red lines. Roughly speaking, the shape parameter α of the log-
Frechet distribution is a measure of the amount overlap between different st
paths. When α= 1, all st paths are independent of each other (not correlated). For
the data shown, αML = 0:66 (circles), 0.85 (triangles), and 0.74 (squares).
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